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Abstract

The concept of friction-induced brake vibrations, commonly known as judder, is investigated. Judder vibration is based

on the class of geometrically induced or kinematic constraint instability. After presenting the modal coupling mechanism

and the associated dynamic model, a stability analysis as well as a sensitivity analysis have been conducted in order to

identify physical parameters for a brake design avoiding friction-induced judder instability.

Next, in order to reduce the size of the instability regions in relation to possible system parameter combinations, robust

stability via m-synthesis is applied. By comparing the unstable regions between the initial and controlled brake system,

some general indications emerge and it appears that robust stability via m-synthesis has some effect on the instability of the

brake system.

r 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Friction-induced vibration and instability are complicated phenomena that have been studied in detail
by many researchers [1–23]. However, they are still a major concern in a wide range of mechanical systems
due to the difficulty in resolving the problem. This is especially the case for brake systems, where friction-
induced vibration due to coupling modes can cause severe damage or/and noise. So the prevention and
prediction of unstable vibrations are actually very complex and important problems for the vehicle brake
industry. In order to avoid these problems, the effects of some specific system parameters (typically mass,
stiffness, damping, etc.) need to be studied in order to detect the stable and unstable zones of the mechanical
system subject to friction-induced instability. Though many studies have been conducted and some of them
have been successfully applied to particular brake systems and running conditions, it can be very difficult to
find suitable values of the system parameters in order to obtain stable brake systems for all operating
conditions. In these cases, the engineer therefore needs to find suitable devices to control instability in the
brake system.

In recent decades, friction-induced vibration has received considerable attention from a number of
researchers: Ibrahim [1,2], Bowden and Tabor [3], Rabinowitz [4], Armstrong-Hélouvry [5], and Oden and
Martins [6]. Their investigations were conducted in order to find different mechanisms of friction-induced
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system instability. This type of analysis was then introduced in the context of brake noise to predict the
dynamic behaviour of brake systems and to prevent instability (Ouyang et al. [12], North [7,8], Kinkaid et al.
[10], etc.).

In order to find the most suitable mechanism to describe friction-induced vibration in brake systems, these
different mechanisms have to be examined. They fall into four classes: stick-slip, variable dynamic friction
coefficient, sprag-slip [22] and geometric coupling of degrees of freedom [9,15–21]. The sprag-slip action was
described by Spurr [22] and does not depend on a friction coefficient varying with the relative rotation speed of
the brake disc. Next, a number of investigations have been developed by considering kinematic constraint or
geometric instability. This mechanism involves the coupling of the different degrees of freedom. It can be seen
as an extension of the idea of the sprag-slip model [22]. Earles et al. [15,16,18,20] and North [7,8] conducted
extensive studies of kinematical constrained instability models. They demonstrated that instability may occur
even if the friction coefficient is constant.

In this study, a modal coupling mechanism involving two system modes coupled together due to the friction
interface will be considered. This instability may be defined as a geometrical coupling where two system modes
move closer in frequency as the friction coefficient increases.

In this study, the application of robust control via m-synthesis for a brake system is tested in order to avoid
instability or in order to reduce the instability regions. In the first section, some basic concepts of m-synthesis
will be introduced. In the second section, the modal coupling mechanism used in this study will be briefly
presented and the application of m-synthesis for judder instability will be investigated. Next, a stability analysis
and some interesting studies of possible system parameter combinations for the initial and controlled brake
systems will be undertaken in order to examine the varying effects of robust control analysis on the size of the
instability regions. This sensitivity analysis will be conducted in order to find the physical parameters for a
brake design which avoid friction-induced instability in the case of controlled and uncontrolled brake systems.
Finally, some natural extensions and possible applications of this methodology will be briefly described in the
conclusions.

2. l-synthesis

2.1. Introduction

The robustness of a system P with uncertainties represented by a set Dset of block-diagonal matrices is
studied with the non-singularity of the matrix I� PD (where I is the identity matrix), for D 2 Dset. In order to
treat this problem, the structured singular value m is introduced; this parameter m will be defined below.

This theory was introduced by Doyle [24] in 1982 and has become a standard tool in the robustness analysis
of linear systems. It directly considers the problem of robust stability for a known plant subject to a block-
diagonal structured uncertainty connected in feedback. The utility of m lies in the fact that essentially any
block diagram interconnection of systems and uncertainties may easily be rearranged into this standard form,
i.e. where the uncertainty structure is block-diagonal.
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Nomenclature

C damping matrix
G controller
K stiffness matrix
M mass matrix
N normal load
P initial system
T tangential load

x scalar
x vector
_x vector of velocity
€x vector of acceleration
Dset structured uncertainties set
l eigenvalue of the nominal system
~l eigenvalue of the controlled system
mf brake friction coefficient
m structured singular value
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2.2. Structured singular value

This section defines the structured singular value mð�Þ. We consider matrices P 2 Rn�n and introduce a
structure Dset to define m(P). This structure Dset is a prescribed set of block-diagonal matrices and may be
defined differently for each problem depending on the uncertainty of the problem.

By definition, m(P) is defined for P 2 Cn�n by

mðPÞ ¼
1

minfs̄ðDÞ : D 2 Dset; detðI� PDÞ ¼ 0g
(1)

unless no D 2 Dset makes I�PD singular, in which case mðPÞ ¼ 0. s̄ðDÞ corresponds to the maximum singular
value of the matrix D.

m is then a function of two variables: the complex matrix P and the structure Dset.
Considering the loop shown in Fig. 1, m(P) can be interpreted as a measure of the smallest uncertainty

(represented by the matrix D) that causes instability of the constant matrix feedback loop. The norm of this
destabilizing D is exactly 1/m(P). It means that the weaker m(P) is, the more robust the system.

Details concerning the calculation of the structured singular value are given in Packard and Doyle [25].

2.3. m-synthesis

The definition of m allows an extension of the stability analysis of systems by considering the system
illustrated in Fig. 2. This system is composed of three blocks D, P and G that define the perturbation matrix,
the initial system which should be controlled, and the controller, respectively.

The input/output couples are ðu0;Y 0Þ, ðu1;Y 1Þ and ðu2;Y 2Þ which define respectively the perturbation
variables associated with the perturbation matrix D, the measurable output (with the input control u1) and the
performance variables where u2 includes the commands and the excitation and Y2 represents the errors and the
results.
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Fig. 1. P�D feedback connection.

Fig. 2. General structure of the problem.
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Then, m-synthesis consists of determining the controller G allowing the stability of the system in the presence
of the uncertainty D. The resolution is conducted by applying successive iterations. As the controller is often
denoted by K (notation already used here for the stiffness matrix), this resolution is called the D–K iterations.
These iterations are repeated unless mo1. If mo1, the robust stability of the system is assured for the given
uncertainties. The theory of m-synthesis is developed in Packard et al. [26], Venini [27], Balas et al. [28] and
Markerink et al. [29]. Some applications can be found in Lanzon [30], Wu and Lin [31].

3. Brake systems

In order to demonstrate the suitability of m-synthesis to brake systems and in order to link the effect of
specific parameter variation with stability of the design features, a parameter model including friction forces at
the rubbing surface and mechanisms for friction-induced system instability is established and the equations of
motion are determined.

The problem considered in this study deals with a modal coupling mechanism [11,12] that results from the
coupling of two system modes due to the friction interface. The first mode corresponds to the suspension mode
of the front axle assembly and the second mode corresponds to the normal mode of the brake piston elements.
This phenomenological model was established through experimental investigations [32] and the friction-
induced vibration was observed in the 50–100Hz range without variation of the brake friction coefficient. The
fact that instability may occur even if the coefficient of friction is constant is a very common phenomenon that
has been observed by many researchers [9,11,15–21].

In the following sections, two analytical models (the initial and controlled systems) will first be presented.
Second, a stability analysis for each system will be undertaken and the initial and controlled systems will be
compared in order to demonstrate the suitability of robust control for brake systems.

3.1. Initial system

The initial system studied here is modelled as a three-degrees-of-freedom system, as illustrated in Fig. 3(A):
translational and normal displacement in the y-direction of the mass m2 defined by Y 2ðtÞ and X 2ðtÞ,
respectively, and the translational displacement in the x-direction of the mass m1 defined by X 1ðtÞ. As
previously explained, each mode is linked to a single vibration mode of the brake system: ðk1;m1Þ and ðk2;m2Þ

define the dynamic of the brake piston elements and the dynamic of the suspension mode of the front axle
assembly, respectively. The modal coupling mechanism involves the two modes coupled together due to the
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Fig. 3. Braking model (A) initial system (B) controlled system.
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friction interface. This mechanism may induce a classic flutter instability where two solutions for the
dynamic behaviour of the mechanical system exist. The first solution is an unstable equilibrium whereas
the second is a periodic solution. Then, any perturbation of the equilibrium point implies self-excited
vibrations.

In order to simulate the modal coupling mechanism due to the friction interface, this friction
interface slopes with an angle y. This assumption may be seen as a geometric coupling with the braking
system. This slope couples the normal and tangential degrees-of-freedom induced by the brake friction
coefficient only.

By considering this system composed of two masses m1 and m2 interconnected by stiffnesses k1 and k2
(Fig. 3), the dynamic equilibrium around its static equilibrium position is expressed by the following system of
equations:

m1
€X 1 þ c1ð _X 1 � _X 2Þ þ k1ðX 1 � X 2Þ ¼ 0,

m2
€Y 2 þ c2 _Y 2 þ k2Y 2 ¼ �N sin yþ T cos y,

m2
€X 2 þ c1ð _X 2 � _X 1Þ þ k1ðX 2 � X 1Þ ¼ N cos yþ T sin y. ð2Þ

By applying the hypothesis of maintained contact between the mass m2 and the moving belt, the geometric
constraint imposes

X 2 ¼ Y 2 tan y. (3)

By eliminating X2 in Eq. (3) and considering Coulomb’s friction law T ¼ mf N, the 2-degrees-of-freedom
system has the form

M €xþ C _xþ Kx ¼ 0, (4)

where x ¼ X 1 Y 2

� �T
. €x, _x and x are the acceleration, velocity and displacement response two-dimensional

vectors of the degrees-of-freedom, respectively. The mass matrix M, the damping matrix C and the stiffness
matrix K of the system are given by

M ¼
m1 0

0 m2ðtan
2 yþ 1Þ

" #
, (5)

C ¼
c1 �c1 tan y

c1ð� tan yþ mf Þ c1ðtan
2 y� mf tan yÞ þ c2ð1þ mf tan yÞ

" #
, (6)

K ¼
k1 �k1 tan y

k1ð� tan yþ mf Þ k2ð1þ mf tan yÞ þ k1ðtan
2 y� mf tan yÞ

" #
. (7)

Finally, the dynamic system may be rewritten in state variables:

_z ¼ Az, (8)

where

z ¼
x

_x

� �
(9)

and

A ¼
0 I

�M�1K �M�1C

� �
. (10)

ARTICLE IN PRESS
S. Lignon et al. / Journal of Sound and Vibration 298 (2006) 1073–1087 1077



3.2. Controlled system by applying m-synthesis

m-synthesis is applied to the brake system by assuming that the friction coefficient mf is uncertain. This
uncertainty corresponds to possible variations of the friction with time. This controlled system is illustrated in
Fig. 3(B): the controller U is placed in parallel with the suspension.

3.2.1. Definition of the controlled system

By considering Section 2 and Eqs. (15–17) of the initial brake system, the nominal system is represented by

_z ¼ Azþ B1u1,

y1 ¼ C1zþD11u1, ð11Þ

where

B1 ¼

0

0

0
1þmf tan y

m2ðtan
2 yþ1Þ

2
66664

3
77775, (12)

C1 ¼ 0 1 0 0
� �

, (13)

D11 ¼ 0. (14)

In the presence of uncertainties, the nominal system is modified to introduce the variables corresponding to
the uncertain parameters:

_z ¼ Azþ B0u0 þ B1u1,

y0 ¼ C0zþD00u0 þD01u1,

y1 ¼ C1zþD10u0 þD11u1. ð15Þ

In the case under consideration, the uncertainty is introduced on the friction coefficient mf. As there is only one
uncertainty, the set Dset is reduced to scalar variables, whose elements are noted d. We have then
~mf ¼ mf ð1þ dÞ, where d is the degree of uncertainty. The matrix A is then transformed to ~A ¼ Aþ d � Ā, where
A is the previous matrix and Ā is defined by

Ā ¼

0 0 0 0

0 0 0 0

0 0 0 0

�
mf k1

m2ðtan
2 yþ1Þ

mf tan yðk1�k2Þ

m2ðtan
2 yþ1Þ

�
mf c1

m2ðtan
2 yþ1Þ

mf tan yðc1�c2Þ

m2ðtan
2 yþ1Þ

2
66664

3
77775. (16)

By definition, we have u0 ¼ d � y0,which results in: d � Ā ¼ B0 � ðd
�1
�D00Þ

�1
� C0. This relation allows us to

determine the matrices B0, C0 and Dij:

B0 ¼

0

0

0
1

m2ðtan
2 yþ1Þ

2
66664

3
77775, (17)

C0 ¼ ½�mf k1mf tan yðk1 � k2Þ � mf c1 mf tan yðc1 � c2Þ�, (18)

D00 ¼ 0, (19)

D01 ¼ 0, (20)
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D10 ¼ 0. (21)

The relations between z, y0, y1, u0 and u1 determined in this section are the basis of the m-synthesis resolution.

3.2.2. Resolution

As explained previously, Eqs. (16)–(21) correspond to the complete description of the controlled system
and contain the nominal system and the perturbations linked to the uncertainties from a general
standpoint.

The D–K iterations, allowing us to determine the robust controller by m-synthesis, are conducted
using Matlab software [28]. The controller is determined where the structured singular value m of the
system is less than unity and we obtain the Bode diagram of the controller allowing robust stability of the
system.

The structured singular value m obtained for the brake system is plotted in Fig. 4. We observe that m is less
than unity for all frequencies o, which means that robust stability is assured. This result is obtained after two
D–K iterations.

The controller determined by the algorithm and corresponding to this result is illustrated in Fig. 5. The
controller is approximated by a function GðoÞ which is sought in the form:

GðoÞ ¼ �aG þ bGo
2, (22)

where aG and bG are constants, depending on the values of the parameters of the system.
For the configuration o1 ¼ 387 rad s�1, o2 ¼ 316:2 rad s�1, z1 ¼ 0:008, z2 ¼ 0:0065 (i.e. m1 ¼ 1 kg,

m2 ¼ 1 kg, c1 ¼ 5Nm�1 s�1, c2 ¼ 5Nm�1 s�1, k1 ¼ 1:5� 105 Nm�1, k2 ¼ 1� 105 Nm�1), y ¼ 0:2 rad,
mf ¼ 0:3, the numerical results give aG ¼ 1� 105 and bG ¼ 0:9395. This approximation of GðoÞ allows a
good representation of the controller, as we can see in Fig. 6, and it will be useful in the stability analysis of the
controlled system.

3.3. Stability analysis of the initial and controlled systems

In this section, the stability of the initial and controlled brake systems will be compared. To examine the
stability of the initial system, the eigenvalues l of the matrix A (defined in Eq. (17)) need to be determined. As
long as the real part of all the eigenvalues l remains negative, the system is stable. When at least one of the
eigenvalues has a positive real part, the system is unstable. Moreover, the imaginary part of the eigenvalue
having a positive real part represents the frequency of the unstable mode.
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Fig. 4. Evolution of the structured singular value m.
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For the controlled system, the form GðoÞ ¼ �aG þ bGo
2 means that aG is equivalent to a stiffness and bG is

equivalent to a mass. It enables us to take this into account directly in the mass and stiffness matrices. By
noting ~K and ~M the new mass and stiffness matrices

~K ¼ Kþ
0 0

0 1þ mf tan y � aG

" #
, (23)

~M ¼Mþ
0 0

0 1þ mf tan y � bG

" #
, (24)

a new matrix ~A may be defined for the controlled system by

~A ¼ �
0 I

� ~M
�1 ~K � ~M

�1
C

� �
. (25)

ARTICLE IN PRESS

Fig. 5. Bode diagram of the controller.

Fig. 6. Approximation of the controller (- - - - - - result of the m-synthesis, —— approximation).
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The advantage of these notations is that the stability analysis is similar for the initial and the controlled
systems: the sign of the real part of the eigenvalues ~l of ~A gives the result concerning the stability of the
system.

First, the evolutions of frequencies in relation to the brake friction coefficient for the initial and controlled
brake systems are given in Fig. 7. The evolutions of the associated real parts and the representation in the
complex plan are given in Figs. 8 and 9. As illustrated in Fig. 8, Hopf bifurcation points occur at mf 0 ¼ 0:35
and ~mf 0 ¼ 0:46 for the initial and controlled systems, respectively. A Hopf bifurcation point is defined by the
following conditions:

ReðlcenterðmÞÞjmf¼mf 0
¼ 0,

Reðlnon�centerðmÞÞjmf¼mf 0
a0,

d

dm
ðReðlðmÞÞÞjmf¼mf 0

a0, ð26Þ

where lcenter defines a pair of purely imaginary eigenvalues while all of the other eigenvalues lnon�center have
non-zero real parts at mf ¼ mf 0. The last condition of Eq. (24), called a transversal condition, implies a
transversal or non-zero speed crossing of the imaginary axis.
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Fig. 7. Evolution of the frequency of two coupling modes (- - - - - - initial system, —— controlled system).

Fig. 8. Evolution of the real part of two coupling modes (- - - - - - initial system, —— controlled system).
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If mf omf 0 the initial system is stable; it has two stable modes at different frequencies, as illustrated in Fig. 7.
As the brake friction coefficient increases, these two modes move closer until they reach the bifurcation zone.
We obtain the coalescence for mf ¼ mf 0 of two imaginary parts of the eigenvalues. Finally, the initial system
becomes unstable for mf 4mf 0. In the case of the controlled brake system, the stable and unstable regions are
obtained for mf o ~mf 0 and mf 4 ~mf 0, respectively.

In Fig. 8, it may be observed that the instability region versus the friction coefficient mf is smaller for the
controlled system than for the initial system ð ~mf 04mf 0Þ. This illustrates the suitability of robust control via m-
synthesis.

An interesting observation is that the mode that becomes unstable and reaches the bifurcation zone is
different for the initial and controlled systems (Fig. 11).

Then, in order to demonstrate the suitability of m-synthesis and in order to compare the stability analysis of
the initial and controlled brake systems, different sets of two combinations of physical parameters k1, k2, c1, c2
and y are tested. Figs. 10–14 show the zones of instability for the initial and controlled systems: the dashed line
corresponds to the initial system and the solid line corresponds to the controlled system. Figs. 15 and 16 show
the evolutions of the frequencies and the associated real parts in the complex plane.
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Fig. 10. Stability as a function of brake friction coefficient mf and stiffness k1 (- - - - - - initial system, —— controlled system).

Fig. 9. Evolution of the frequency versus real part of two coupling modes (- - - - - - initial system, —— controlled system).
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Fig. 11. Stability as a function of brake friction coefficient mf and stiffness k2 (- - - - - - initial system, —— controlled system).

Fig. 12. Stability as a function of brake friction coefficient mf and mass m1 (- - - - - – - - - - - initial system, —— controlled system).

Fig. 13. Stability as a function of brake friction coefficient mf and mass m2 (- - - - - - initial system, —— controlled system).
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Fig. 14. Stability as a function of brake friction coefficient mf and angle y (- - - - - - initial system, —— controlled system).

Fig. 15. Frequency and real part of eigenvalue of the initial system for various friction coefficients mf and stiffness k1.

Fig. 16. Frequency and real part of eigenvalue of the controlled system for various friction coefficients mf and stiffness k1.
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For all tested combinations of the different parameters with the brake friction coefficient (Figs. 10–14), the
controller provided by m-synthesis allows an increased stable zone for the brake system. However, for some
values of these parameters which correspond more or less to the nominal setting, this improvement is very
weak. Another interesting result of m-synthesis is that the intervals of instability frequencies are reduced for the
controlled brake system in comparison with the initial system, as illustrated in Figs. 15 and 16 and Table 1.
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Fig. 17. Temporal response of the initial system for mf ¼ 0:4.

Table 1

Comparison of the instability regions for the initial and controlled brake system

Parameter Initial system (Hz) Controlled system (Hz)

k1 47–64 49–62

k2 42–65 43–65

m1 44–63 47–58

m2 44–64 44–64

y 51 49–52

Fig. 18. Temporal response of the controlled system for mf ¼ 0:4.
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Finally, dynamical responses of the system are presented in Figs. 17 and 18 in order to illustrate the
advantages of the controlled brake system versus the initial brake system. In this case, we consider
a combination of parameters corresponding to an unstable zone for the initial system and a stable zone
for the controlled system (m1 ¼ 1 kg, m2 ¼ 1 kg, c1 ¼ 5Nm�1 s�1, c2 ¼ 5Nm�1 s�1, k1 ¼ 1:5� 105 Nm�1,
k2 ¼ 1� 105 Nm�1, y ¼ 0:2 rad, mf ¼ 0:4). In such a case, the temporal response of the initial system grows
exponentially while that of the controlled system is softened (Figs. 17 and 18). Fig. 19 illustrates the
oscillations of the initial and controlled systems. It illustrates the difference between the behaviour of the two
systems. The instability is manifested by an exponentially increasing curve. On the other hand, the response of
the controlled system is more complex but is limited in amplitude.

4. Conclusion

This study presents an application of m-synthesis in order to eliminate friction-induced vibration for a brake
system. A model for judder instability analysis and an associated stability analysis for the initial and controlled
systems are developed. For further understanding of the effects caused by variations in some parameters and
the suitability of m-synthesis, a stability analysis using two parameter evolutions has been conducted.

Robust stability via m-synthesis for brake systems appears interesting for reducing the size of the instability
regions in relation to the possible system parameter combinations. This procedure can be applied to a brake
design avoiding friction-induced judder instability.
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